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Summary: Pretraining robust, effective multimodal LLMs come with many different challenges. In this
week’s discussion, we discuss three aspects of the challenge of pretraining multimodal LLMs: 1) Data, 2)
Architecture, and 3) Scalability. The following was a list of provided research probes:

1. What types of multimodal data noise are typically present in multimodal datasets, and how can they
negatively impact the performance of a model during training? Can you provide examples of multimodal
data points that might be considered noisy? Furthermore, how might we develop estimators capable of
distinguishing between noisy and noise-free multimodal data pairs? If you have unlimited fundings to
use for data filtering and data cleaning, what would be the ideal way to clean the multimodal dataset?

2. Given the demonstrated effectiveness of high-quality pretraining, as evidenced by projects like Mistral,
imagine you have access to a large-scale, high-quality multimodal dataset for pre-training purposes.
What types of generalization or additional capabilities might this enable the model to acquire compared
to those trained on lower-quality data? Why do models trained with high-quality data obtain such
abilities?

3. Considering the diversity of model architectures available for multimodal generation, which architecture
would be most suitable for scaling general multimodal generation tasks? Moreover, which model
architecture is best equipped to learn complex multimodal interactions effectively?

4. What are some pros and cons of treating data from all modalities equally (throwing them into a single
large generative Transformer, after tokenizing the data)?

5. If you were leading a multimodal foundation model project equipped with extensive resources, including
a skilled team and significant GPU capabilities, what multimodal architecture and types of multimodal
data would you prioritize for an initial pilot study?

6. In exploring the scaling laws of multimodal models, different papers have different definitions for scaling
law formula. Which factors should be incorporated into the scaling law formula, and which among
these do you believe is the most critical to consider?

As a background for the mentioned content, students were required and suggested to read the following
papers:

1. (Required) ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision
[Kim et al., 2021]

2. (Required) Scaling Laws for Generative Mixed-Modal Language Models [Aghajanyan et al., 2023]
3. (Suggested) Scaling Multimodal Pre-Training via Cross-Modality Gradient Harmonization [Wu et al.,

2022]
4. (Suggested) Scaling Laws for Autoregressive Generative Modeling [Henighan et al., 2020]
5. (Suggested) Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens [Liu et al.,

2024]
6. (Suggested) CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation [Tang et al., 2023]
7. (Suggested) Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP

[Nguyen et al., 2023b]
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8. (Suggested) Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved with Text [Zhu et al.,
2023]

9. (Suggested) Improving Multimodal Datasets with Image Captioning [Nguyen et al., 2023a]

1 Noise in Multimodal Data

Noise in multimodal data can be particularly challenging due to the interconnected nature of modalities.
Adversaries may introduce deliberate noise to mislead or confuse models, which can manifest as misleading
information in one or more modalities, making it difficult for models to make accurate predictions. The
complexity of the dataset dictates the model size, with a noisy dataset requiring a more complex model to
accurately capture and distinguish relevant features. On the other hand, a high-quality dataset with minimal
noise allows for simpler models, reducing computational costs without sacrificing performance.

In a multimodal setting, noise in one modality, such as irrelevant background in images, can significantly
impact the overall interpretation. The definition of noise is task-dependent, and features considered as noise
in one task might be critical in another, highlighting the importance of context in multimodal learning.
Techniques like Active Learning and Curriculum Learning during pretraining can be employed to mitigate
the impact of noise by focusing on the most informative data points and gradually increasing the complexity
of the data.

Moreover, cultural and regional differences can lead to varying interpretations of the same data, resulting in
different ground truths. This diversity must be considered when training and evaluating multimodal models.
Additionally, the way datasets are labeled (prompt engineering) can significantly impact the quality and
utility of the labels, affecting model performance.

To address these challenges, it is essential to have a clear understanding of the characteristics of the data and
the task at hand. By recognizing the different types of noise present in the data, such as adversarial noise,
label noise, and sampling bias, we can develop strategies to mitigate their impact. For instance, techniques
like data augmentation, transfer learning, and ensembling can be used to improve the robustness of models
to noise.

In summary, noise in multimodal data presents unique challenges that must be addressed through a combination
of techniques that take into account the interconnected nature of modalities, cultural and regional differences,
and the task-dependent definition of noise. By developing a deeper understanding of these factors, we can
create more accurate and robust multimodal models that can effectively handle noisy data.

2 Scalable, Generalizable, Multimodal Generation Architectures

2.1 Notable Architectures

• Transformer models have shown great success in scaling with data and model size, offering significant
improvements in handling multimodal data due to their ability to capture long-range dependencies
across different types of inputs.

• Mixture of Experts (MoE) models:

1. Train experts for different types of datasets, allowing for specialized handling of distinct modalities
or data types [Mustafa et al., 2022].

2. Discovering mixture of experts through 2-stage training involves training experts for specific tasks
or modalities and then learning to optimally combine their outputs, leveraging their individual
strengths.

• Model Merging integrates different specialized models (e.g., culturally specific models, domain-specific
query models) to create a more robust and comprehensive understanding of multimodal data.

– This approach allows for nuanced predictions that consider diverse perspectives and interpretations.
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Table 1: Pros and Cons of Treating Data from all Modalities Equally.
Pros Cons

Uniform tokenization across modalities can lead to
lower perplexity, indicating better model understand-
ing and generation.

Differentiating modality-specific features becomes
challenging, potentially leading to loss of critical in-
formation.

Efficient processing across diverse modalities. Fails to leverage the unique inductive biases inherent
in different modalities.

Increases the complexity and input size, demanding
more computational resources.

3 Scaling Laws of Multimodal Models
• With sufficient data variety and volume, multimodal models typically show a reduction in loss, indicating
improved learning and generalization.

• Modalities that are conceptually closer (like text and code) tend to have lower perplexity compared
to more disparate modalities (like images and audio), suggesting that similar modalities are easier for
models to learn and integrate.

• To challenge the current scaling laws, empirical evidence showing deviations from these trends in
large-scale multimodal datasets would be necessary.

• The tokenization schema, which converts various modalities into a format understandable by the model,
is critical. Effective schemas capture the essence of each modality while enabling integration with
others.
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