



Language Technologies Institute



# Advanced Topics in Multimodal Machine Learning (11-877)

**Lecture 1: Introduction** 

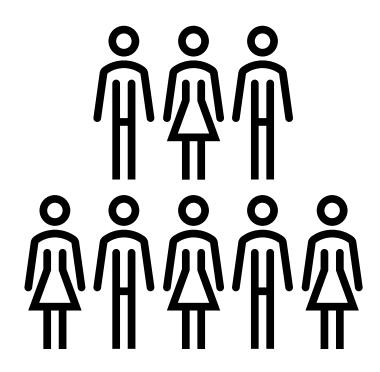
Louis-Philippe Morency, Amir Zadeh, Paul Liang

# **Your Instructors This Semester (11-877)**



Louis-Philippe Morency morency@cs.cmu.edu Course instructor




Amir Zadeh abagherz@cs.cmu.edu Course instructor



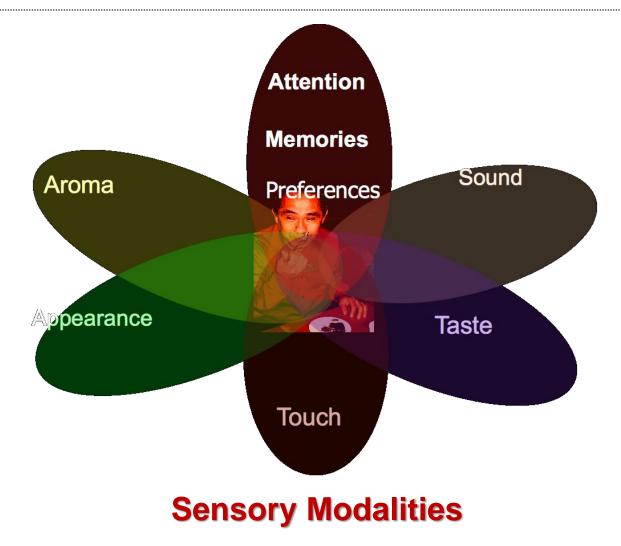
Paul Liang pliang@cs.cmu.edu Course instructor

劵

### **Time for Introductions!**



Your name, department and programs

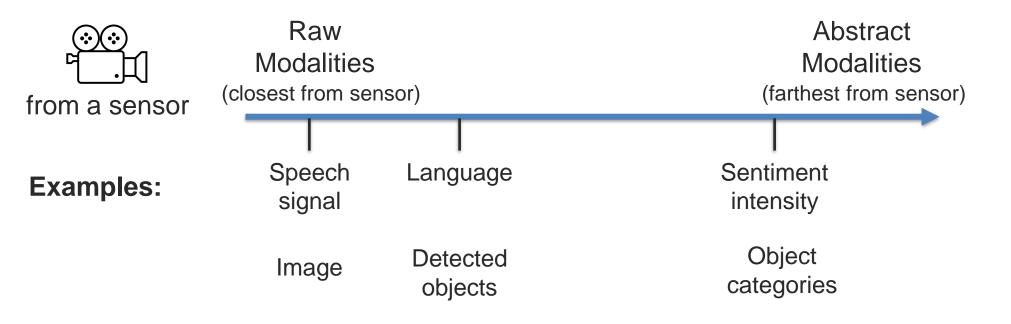

Your favorite modality(ies)!

Previous research experience in multimodal

Why are you interested in this course?

# What is Multimodal?

# What is Multimodal?




#### Carnegie Mellon University

# What is Multimodal?

### Modality

Modality refers to the way in which something expressed or perceived.



#### Multimodal: from multiple modalities

- □ Natural language (both spoken or written)
- □ Visual (from images or videos)
- □ Auditory (including voice, sounds and music)
- □ Haptics / touch
- □ Smell, taste and self-motion
- Physiological signals
  - Electrocardiogram (ECG), skin conductance
- Other modalities
  - Infrared images, depth images, fMRI

## What is Multimodal?

#### Heterogeneity

Information present in the different modalities will often show diverse qualities and elements.

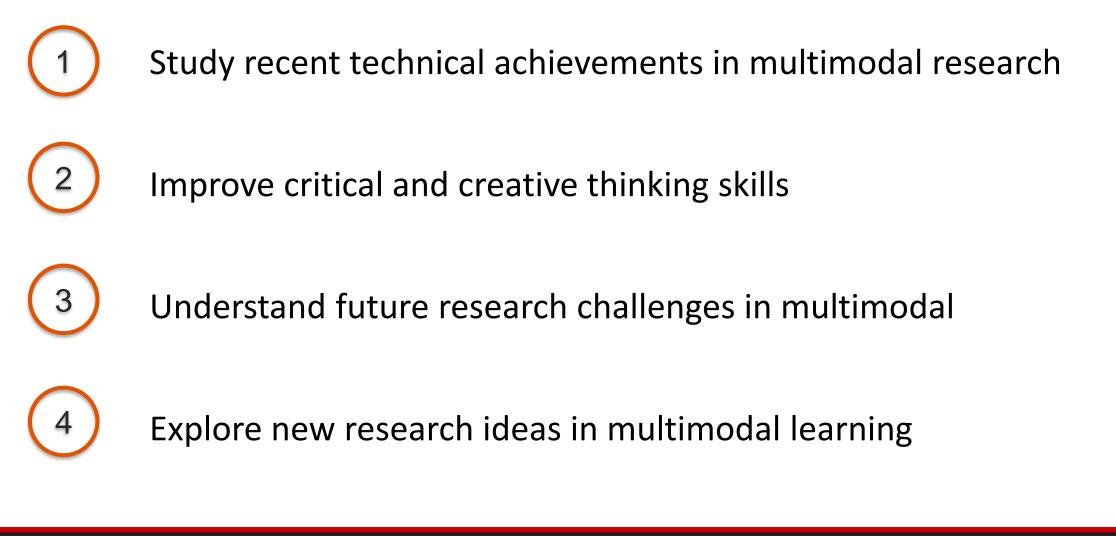
| Modality A<br>Modality B | Homogenous<br>Modalities<br>(with similar qualities) |                                       | Heterogenous<br>Modalities<br>(with diverse elements) |     |
|--------------------------|------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-----|
| Examples:                | Images<br>from 2<br>cameras                          | Text from<br>2 different<br>languages | Language<br>and vision                                | ??? |

*Multimodal Machine Learning* is the study of computer algorithms that learn and improve through the use and experience of multimodal data

*Multimodal Artificial Intelligence* studies computer agents able to demonstrate intelligence capabilities such as understanding, reasoning and planning, through multimodal experiences, and data

# Multimodal is the science of heterogenous data ©

### What are the main Dimension of Multimodal Heterogeneity?




https://miro.com/app/dashboard/

Carnegie Mellon University

# Course Syllabus

## **Learning Objectives**



#### **Two Versions: 6-credits and 12-credits**

- 6-credit version:
  - Reading assignments
  - Small group discussions
  - Synopsis leads
- 12-credit version
  - Same 6-credit expectations + a high-quality research project:
    - Proposal + literature review
    - Midterm and final reports
    - Weekly updates (during team meetings with instructor)

- Week 1 (1/21): Introductions
- Week 2 (1/28): Cross-modal interactions
- Week 3 (2/4): Multimodal Co-learning
- Week 4 (2/11): Pre-training paradigm
- Week 5 (2/18): Multimodal reasoning
- Week 6 (2/25): Memory and long-term interactions
- Week 7 (3/4): No classes Spring break
- Week 8 (3/11): No classes Spring break

Week 9 (3/18): Brain and multimodal perception Week 10 (3/25): Beyond language and vision Week 11 (4/1): Subjectivity and dataset biases Week 12 (4/8): No classes – CMU Carnival Week 13 (4/15): Fairness and real-world constraints Week 14 (4/22): Multimodal generalization Week 15 (4/29): Multimodal with low-resources

#### What are Your preferences?



https://miro.com/app/dashboard/

Carnegie Mellon University

- Two main parts:
  - Assigned reading papers: Read the assigned papers and summarizing the main take-away points of each paper
    - Optional: if you have clarification questions about the papers
  - Research question probes: Reflect on the question probes related to the reading papers and prepare discussion points.
    - Students should also scout for extra papers, blog posts or other resources related to these question probes
- 11 readings assignments, with usually 2 assigned papers

- Two groups of 8-10 students, one instructor per group
- Round-table discussions:
  - Understanding papers: focus on clarifying any questions or misunderstandings related to the two research papers (15-20 mins)
  - Research discussions: Discuss the research question probes. Each student is expected to actively participate in this discussion.

- 2 leads per session, one for each small group
- The main tasks of the discussion synopsis leads are
  - Active support: Leads are expected to read the assigned papers with extra details, to assist other students if clarification questions
  - Note-taking: Leads should take detailed notes during discussions.
    Notes are for internal use, not shared outside the course.
  - **Synopsis:** Both leads will meet to create one coherent synopsis from both discussions. These synopses will be public on the course website.

- Reading assignment 40%
  - 5 points per assignment
  - Top 8 scores kept for final grade
- Participation and discussions 32%
  - 4 points per discussion session
  - Top 8 scores kept for final grade
- Discussion synopsis leads
  - 14 points for each synopsis (including note-keeping & support)
  - Top 2 scores kept for final grade

- ✓ Similar in spirit to a 6-credit independent study project
- ✓ Project teams of 2 or 3 students
- $\checkmark$  Final report should be like a research paper
- ✓ Expected to explore new research ideas
- ✓ Regular meetings with instructors

- **Project preferences** (Due Monday 1/24 at 8m ET) Online form to share your interests about research projects and help with team matching.
- **Pre-proposal** (Due Thursday 2/3 at 8pm ET) You should have selected your teammates, have ideas about your dataset and task.
- **Proposal and Literature Review** (Due Monday 2/21 at 8pm ET) Description of your research ideas and review of relevant papers.
- **Midterm report** (Due Monday 3/14 at 8pm ET) Intermediate report documenting the initial results exploring new research ideas.
- **Final report** (Due Monday 5/2 at 8pm ET) Final report describing explored research ideas, with experimental results and discussion.

- Meetings on a weekly basis, 20-30 minutes per meeting
- Online document for updates
  - Either Google Slides (preferred) or Google Docs
  - Same document for the whole semester
  - Weekly updates should be informal, focusing only on the highlights
    - For example, one new slide per week, with 3-4 main items
- Meetings designed to get feedback from all instructors regularly

- Grading breakdown of the 6-unit version will be scaled to 50%.
- The second 50% comes from the course project:
  - Pre-proposal and project preferences 5%
  - Proposal and literature review 15%
  - Midterm report 20%
  - Final report 30%
  - Weekly updates 30%
    - 3 points per update, top 10 scores kept for final grade

- Lectures are not recorded, students expected to attend live
  - If you plan to miss more than one lecture this semester, let us know as soon as possible.
- Reading assignment wildcards (3 per students)
  - 24-hours extension, max 1 per week
- Project assignment wildcards (2 per teams)
  - 24-hours extension, can be used together

Piazza

For course announcements and assignments
 <u>https://piazza.com/cmu/spring2022/11877/info</u>

- CMU Canvas
  - For assignment submissions and grading

https://canvas.cmu.edu/courses/28476

- Course website
  - A general public version of the course information
    - Discussion synopsis will be posted here

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

Week 2 reading assignment (Due Wednesday 1/26 at 11pm ET)

Detailed instructions will be posted on Piazza

For students taking the 12-credit version:

- 1. Project preference form (to help with team matching)
  - Google Form will be shared on Piazza
- 2. Schedule availability for project update meetings
  - When2meet form will be shared on Piazza

Both due this Tuesday 1/25 at 8pm ET