11-877 Advanced Multimodal Machine Learning Spring 2022

Week 4: Pretraining Paradigm
Instructors: L.-P. Morency, A. Zadeh, P. Liang Synopsis Leads: Karthik Ganesan, David Lin
Edited by Paul Liang Scribes: Justin Lovelace, Dong Won Lee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

Follow the rest of the class here: https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

Summary: Multimodal machine learning is the study of computer algorithms that learn and improve through
the use and experience of multimodal data. It brings unique challenges for both computational and theoretical
research given the heterogeneity of various data sources. In week 4’s discussion session, the class discussed
recent trends of large-scale pretrained language and multimodal models. The key themes included large-scale
data collection, whether pretrained models are learning or memorizing, the cross-modal interactions learned
by these models, and the overall risks and opportunities offered by the pretraining paradigm. The following
is a list of provided research probes:

1. Is large-scale pretraining the way forward for building general AI models? What information potentially
cannot be captured by pretraining? What are the risks of pretraining?

2. What are the types of cross-modal interactions that are likely to be modeled by current pretrained
models? What are the cross-modal interactions that will be harder to model with these large-scale
pretraining methods?

3. How can we best integrate multimodality into pretrained language models? What kind of additional
data and modeling/optimization decisions do we need?

4. What are the different design decisions when integrating multimodal information in pretraining models
and objectives? What are the main advantages and drawbacks of these design choices? Consider not
just prediction performance, but tradeoffs in time/space complexity, interpretability, and so on.

5. How can we evaluate the type of multimodal information learned in pretrained models? One approach
is to look at downstream tasks, but what are other ways to uncover the knowledge stored in pretrained
models?

As background, students read the following papers:

1. (Required) Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers [Hendricks
et al., 2021]

(Required) Multimodal Few-Shot Learning with Frozen Language Models [Tsimpoukelli et al., 2021]
(Suggested) Unifying vision-and-language tasks via text generation [Cho et al., 2021]

(Suggested) Flava: A foundational language and vision alignment model [Singh et al., 2021]
(Suggested) Pretrained transformers as universal computation engines [Lu et al., 2021]

(Suggested) On the opportunities and risks of foundation models [Bommasani et al., 2021]
(Suggested) Does Vision-and-Language Pretraining Improve Lexical Grounding? [Yun et al., 2021]
(Suggested) Behind the scene: Revealing the secrets of pre-trained vision-and-language models [Cao
et al., 2020]

(Suggested) Integrating multimodal information in large pretrained transformers [Rahman et al., 2020]
10. (Suggested) Zero-shot text-to-image generation [Ramesh et al., 2021]
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We summarize several main takeaway messages from group discussions below:


https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/
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1 Billions of Parameters is All You Need?

Recent large pretrained language models have billions of parameters (see Figure 1). Multi-TPU or Multi-GPU
setups are required to efficiently pretrain with large-scale data. However, the success of distilled models
suggests that we may not need as many parameters as is often used [Sanh et al., 2019]. In addition, the best
models are often the models that are undergo task-specific training trained on the data most similar to the
downstream task instead of simply using the most data. Instead of worrying about continuously scaling up,
we may focus our attention towards developing better and more diverse datasets.
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Figure 1: Recent pretrained models have billions of parameters. Source: https://www.microsoft.com/
en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft.

2 Collecting Large-scale Datasets

There is the notion of strong pairs vs weak pairs for multimodal datasets. Strong pairs are typically represent
exact alignments between modalities and are often more expensive to obtain (e.g., human-annotated image
captioning datasets where all regions of the image are exactly described in text). Weak pairs represent
imperfect alignments between modalities but can be obtained more cheaply from large-scale web data (e.g.,
Instagram captions of images are easy to obtain but may not exactly describe all details in the image). As
a result, large-scale multimodal datasets used for pretraining typically leverage noisy weak pairs [Ramesh
et al., 2021] scraped from the web. We may obtain strong pairs by asking humans, such as Mechanical Turk
workers, to explicitly describe the images. However, due to the involvement of humans, we may need to also
consider potential in-group or regional biases of the workers. We may also use strong pretrained models to
label more aligned data [Schuhmann et al., 2021], structured knowledge databases like WikiHow that provide
quality aligned data [Koupaee and Wang, 2018], or large-scale multimodal benchmarks that contain diverse
sets of modalities and tasks [Liang et al., 2021].


https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft
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3 Learning or Memorizing?

Given large datasets, are pretrained models meaningfully learning or are they simply “nearest neighbor
machines that can memorize big hash tables”? We may try adding perturbations to examine whether the
model is learning the spirit of the tasks, such as adding a “not” in the front of VQA questions [Gokhale
et al., 2020], blocking out the answer part of the image, asking the model to answer sub-questions, or other
measures of robustness. Other ideas include generating a heatmap of the attention scores to visualize whether
the model is focusing on relevant information [Selvaraju et al., 2017] or analyzing the multimodal embedding
space with unsupervised techniques like clustering to gain further insight.

4 Beyond “Language” Models

Masked-language modeling seems to be very helpful while the visual analog (masked-region modeling) does
not seem as helpful [Hendricks et al., 2021]. How can we represent images to work in conjunction with
language models? Object detection allows abstractions for the visual domain, but it seems like it doesn’t
always help in practice. Can we develop universal models learned via multimodal pretraining? In Table 1, we
list several recent attempts in this direction:

Table 1: Several recent attempts at universal models learned via multimodal pretraining.

Paper Modalities Tasks Tested
text-based video retrieval, video captioning,

UniVL [Luo et al., 2020] video, text action segmentation and step localization, sentiment analysis
. visual question answering, referring expression comprehension,
VL-T5/VL-BART [Cho et al., 2021] image, text visual commonsense reasoning
. . vision tasks, NLP tasks (GLUE), VQAv2, SNLI-VE,
FLAVA [Singh et al., 2021] image, text Hateful Memes, Flickr30K, COCO retrieval
Perceiver [Jaegle et al., 2021] text, images, sets NLP, optical flow,

image classification, StarCraft 11
PolyViT [Likhosherstov et al., 2021] video, image, audio standard video- and audio-classification datasets
video action recognition, audio event classification,
image classification, text-to-video retrieval
UFO [Wang et al., 2021] image, text VQA, COCO image captioning and nocaps, image-text retrieval
speech recognition, image classification,
natural language understanding
BLIP [Li et al., 2022] image, text image-text retrieval, image captioning, VQA
image captioning, text-to-image generation,
VQA, SNLI-VE, referring expression comprehension

VATT [Akbari et al., 2021] video, audio, text

data2vec [Baevski et al., 2022] image, text, speech

OFA [Wang et al., 2022] image, text

5 Cross-modal Interactions

In this section, we aim to further investigate the cross-modal interactions captured during pretraining. One way
to analyze this is to take a pretrained Transformer model and visualize the type of interactions they capture [Li
et al., 2020]. Another method that was proposed separately trained unimodal transformers before training
a cross-modal transformer to learn cross-modal interactions while retaining unimodal information [Singh
et al., 2021]. For future work, can we derive interpretable cross-modal interactions and compare them with
mathematical, formulaic expressions (additive, multiplicative)? Can we design self-supervised tasks that
reflect the specific cross-modal interactions we want the model to learn?

A related area of discussion is the role of co-learning on multimodal pretraining. Existing pretraining
paradigms require a large bank of language data to learn representations. How much additional information
from the image modality can we use to supplement or replace the information from text corpora? Future
work can explore vision and language models that capture alignment between two modalities [Tsimpoukelli
et al., 2021] and compare it with language-only pretraining paradigms on language-only tasks.
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6 Future Directions

First, a promising direction to evaluate whether a pretrained model is really learning instead of memorizing is
to start with building probing datasets for specific domains [Zadeh et al., 2019]. Second, as we shift towards
a paradigm of developing large-scale pretrained models, more and more computational resources are required
to train these models. In such a scenario, how can academia and industry work together?
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