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Summary: Multimodal machine learning is the study of computer algorithms that learn and improve
through the use and experience of multimodal data. It brings unique challenges for both computational and
theoretical research given the heterogeneity of various data sources.

In week 10’s session, students discussed challenges in representation, scalability, and evaluation of multimodal
learning from a large number of modalities, especially diverse and understudied ones beyond language and
vision. These modalities include time-series, tabular, graph, and sensor data especially prevalent in healthcare
and robotics applications. The following list of research probes was provided:

1. What are the modalities beyond language and vision that are important for real-world applications?
What unique structure do they contain, and what are the main challenges in performing multimodal
learning with them?

2. When reflecting on the heterogeneous aspect of multimodal learning, how are the other modalities
different from language, speech, and vision? What dimensions of heterogeneity are important for these
other modalities?

3. What are the cross-modal interactions that you expect in these other modalities? Could you see ways
to model cross-modal interactions with these other modalities and with language and vision?

4. How do the core research problems of unimodal and multimodal processing, integration, alignment,
translation, and co-learning generalize to modalities beyond language and vision? What core insights
from these ‘common’ modalities have yet to be explored in understudied modalities?

5. What is the best way to visualize these relatively understudied modalities? How can we best analyze
and characterize the multimodal interactions present between these other modalities?

6. How to learn models for many modalities (10+ modalities)? What are the chances to create multimodal
learning algorithms that work for all modalities? What are the tradeoffs between modality-specific
multimodal models and general-purpose multimodal models?

7. If two modalities are very far from each other (strong heterogeneity and/or encoding very different
information), how can we address the problem of multimodal learning?

As background, students read the following papers:

1. (Required) A comprehensive survey on multimodal medical signals fusion for smart healthcare systems
[Muhammad et al., 2021]

2. (Required) Multimodal Sensor Fusion with Differentiable Filters [Lee et al., 2020a]
3. (Suggested) Integration of EEG/MEG with MRI and fMRI [Liu et al., 2006]
4. (Suggested) A Multi-Sensor Fusion System for Moving Object Detection and Tracking in Urban Driving

Environments [Cho et al., 2014]
5. (Suggested) Detect, Reject, Correct: Crossmodal Compensation of Corrupted Sensors [Lee et al., 2021]
6. (Suggested) Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich

Tasks [Lee et al., 2020b]
7. (Suggested) Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges

[Gravina et al., 2017]

1

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/


2 Synopsis 10: Beyond Language and Vision

8. (Suggested) Multi-Sensor Fusion: A Perspective [Hackett and Shah, 1990]
9. (Suggested) MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [Liang et al.,

2021]
10. (Suggested) HighMMT: Towards Modality and Task Generalization for High-Modality Representation

Learning [Liang et al., 2022]
11. (Suggested) Sensor Fusion for Mobile Robot Navigation [Kam et al., 1997]
12. (Suggested) Multi-source information fusion based on rough set theory: A review [Zhang et al., 2021]
13. (Suggested) Combining EEG and fMRI: A Multimodal Tool for Epilepsy Research [Gotman et al., 2006]
14. (Suggested) Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights [Jahja

et al., 2019]

We summarize several main takeaway messages from group discussions below:

1 Challenges in learning from heterogeneous data

1.1 Heterogeneity and representation

Some modalities, such as brain scans, are analogous to language and vision. For example, brain scans are
still images so we can use the same techniques (such as Convolution Neural Networks) [Bernal et al., 2019].
In addition, Lee et al. [2020b] use WaveNet [van den Oord et al., 2016] for processing data from forces and
torque, even though WaveNet is originally used for audio data. This presents the possibility of using the
same processing technique despite the different data input (force/torque vs audio) so that we can adopt prior
techniques for new data types.

Other data structures may require additional finetuning before they can be processed. For example, Electronic
Health Records (EHRs) have language information, so we can use similar techniques as for other language
processing tasks. However, we would want to fine-tune them to process domain-specific vocabulary and
numerical inputs [Li et al., 2021]. Other data sources like point cloud representations [Qi et al., 2017] have
both real and complex domains, which could pose challenges.

1.2 Fusion

Fusion poses additional challenges because different data sources have different structural properties: for
example, EHR data is typically in a tabular format which is difficult to fuse with other data structures such
as images. To address this, one could use a heterogeneous graph that encodes the information sources into a
common structures [Hu et al., 2020]. Different data sources can also have different scaling techniques and
may not standardize in the same way, posing alignment challenges. Moreover, with new modality types,
there may be new types of cross-modal interactions beyond the typical additive [Hessel and Lee, 2020] and
multiplicative [Jayakumar et al., 2020] interactions we expect between vision and language. Thus, there may
not be any general way to fuse modalities. Until alignment is solved, the latent spaces we perform fusion on
may not contain sufficient cross-modal representations for a general fusion algorithm to be effective.

Moreover, we can fuse modalities at different points in the network, opening another research problem.
Early fusion may create large, unstructured data representations. Late fusion allows the model to learn
some high-level structures of the modalities which could be lost through early fusion. This may increase
computational cost, revealing a trade-off between complexity and location of modality fusion.

1.3 Modality Bias

Aside from data structure differences, there is a risk that representations will be biased towards a handful of
the modalities. For example, if we have a better model for one modality (e.g. a large pretrained transformer
for text [Devlin et al., 2018] and low level statistical signals for acoustic [Degottex et al., 2014]) it may bias
learning to rely much more on the better pretrained text transformer. This problem may also be pronounced
when low-resource modalities are present, as their representation spaces will be less expressive than their
large pretrained counterparts. Thus, we may have to integrate some modalities into the model at different
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points during training or weight modalities differently to prevent one or a few modalities from dominating.
We could draw from information theory to determine how to weigh modalities. For example, we can measure
information flow from one modality to another and up-weight the modality that carries more information than
another one. On the decision level, we also have to use different techniques to address different confidence
scores from each modality, such as in the Bayesian Filtering paper [Lee et al., 2020a]. We have to figure out
which modality is most useful or trustworthy in a given situation.

1.4 Pre-training

Pre-training for heterogeneous data is difficult when there is limited data. In healthcare, for example, data is
limited and hard to access, so it’s difficult to build the same large, pre-trained models we use for language
and vision. Also, data is collected for very specific tasks (i.e., classifying one type of disease or finding one
particular robotic target), so it may be hard to build a pre-trained model that can generalize to multiple tasks.
Other pairwise techniques, like contrastive learning [Le-Khac et al., 2020], may not scale to many modalities.
Contrastive loss is typically pairwise, and would result in many error terms, risking the model ignoring some
or many of the terms, and therefore, the model may not learn cross-modal interactions between certain
modalities. Co-learning may also be difficult because the number of modalities can vary; some modalities may
be missing and the model must recover from that. A recent model, HighMMT, may address some issues we
discussed, including recovering from missing modalities and integrating different data structures into a single
model in the context of multi-task learning and partially observable modalities [Liang et al., 2022].

1.5 Low-Resource Settings

There are also some unique challenges to consider when learning from low-resource modalities. There may
not be enough data for effective model learning; thus, we could incorporate inductive biases for our models
to better fit domain specific data. This approach, however, relies on human expertise instead of creating
algorithms that can learn patterns from the data alone, and may fail in cases where inductive biases cannot
be readily defined.

Models could also be designed to adapt knowledge from similar (but higher resource) tasks to the low-resource
tasks. In this direction, domain adaptation of models may be helpful [Bousmalis et al., 2016, Ajakan et al.,
2014, Gideon et al., 2019]. Another approach is to map the style of low-resource data to the style of
high-resource tasks, so high-resource models can be used via fine-tuning. A challenge in this approach would
be how to transfer the style of the data without problems such as mode collapse [Creswell et al., 2018, Lin
et al., 2018].

One could also map the style of low-resource data to the style of high-resource tasks, then use the models
trained on the high-resource task to finetune on the low-resource data. A fundamental challenge in this
approach would be how to transfer the style of the data without problems such as mode collapse [Creswell
et al., 2018, Lin et al., 2018] and other issues that undermine the effectiveness of style-transfer, particularly in
non-interpretable latent spaces. Another solution could be to use large pretrained models to help gather more
data within the low-resource domain, thus expanding the dataset while minimizing the loss in authenticity
from the original domain space.

2 Developing a pipeline for scaling to many modalities

All of the above challenges considered, it is useful to develop a systematic way for approaching problems
using heterogeneous data from diverse and understudied modalities. One example workflow could be:

1. Start with unimodal data and filter out anomalies.
2. Scale data and transform it (for example, standardizing sampling rate differences) to enable better

alignments.
3. Create a simple baseline by concatenating inputs from all modalities.
4. Look for unimodal or multimodal pre-trained models and decide whether to use a pre-trained model.
5. Analyze interactions between modalities and filter ones as necessary.



4 Synopsis 10: Beyond Language and Vision

6. Determine evaluation (discussed more in Section 3).

For a baseline model, we could simply concatenate different modality representations to see the performance
of the model without cross-modal interactions, then add more complex interactions afterwards, depending on
the baseline performance. The memory and parameter complexity would scale linearly with the number of
modalities, but concatenation may miss out on important feature combinations that a method which scales
exponentially might capture (e.g. Tensor Fusion [Zadeh et al., 2017]).

Going beyond the baseline (step 3), we could filter out modalities using different criteria, reducing the
complexity of our input space. Aggregators at different stages [Yang et al., 2020] or clustering techniques
[Müllner, 2011] could combine modalities and thus reduce loss terms in objectives like the contrastive loss.
Another option is to discard modalities that are not useful for the task. For high-dimensional data, we can use
techniques like manifold learning and Principal Component Analysis (PCA) to reduce the dimensionality of
data. Moreover, we could run experiments to determine where in the network to perform early or late fusion,
and train models to automatically find an optimal set of modalities out of the original input set.

The quality of fused representations heavily depends on the quality of unimodal feature extractors, which
are mostly trained in a self-supervised fashion. We could analyze the self-supervised losses each unimodal
feature extractor is trained on and understand how those signals influence each other. For example, perhaps
a word-masking approach [Devlin et al., 2018] is the best way to train language models, but by masking
frames in a higher frequency signal such as audio [Hsu et al., 2021], the pretrained model we create may not
generate as cohesive a latent space when combined with the text model. For this reason, it is important
to look into end-to-end multimodal self-supervised learning and downstream signals to learn coherent
representations.

3 Measuring the quality of heterogeneous multimodal spaces

One interesting open question is how to determine the quality of multimodal latent spaces. This is a difficult
problem to solve with real world data, as the properties of alignment and co-learning are both difficult to
define and costly to annotate. Designing synthetic datasets and tasks will be helpful to clarify what is meant
by co-learning and alignment, test these hypotheses in an empirical way, and transfer understanding to
real-world data. One core challenge is to understand how modalities can be similar or different, and how that
affects co-learning and alignment.

In considering how to evaluate multimodal spaces, we could evaluate on downstream tasks, perform multitask
evaluation, or evaluate representations through retrieval and reconstruction. For cases in which there
are multiple “correct” outputs, we could use contrastive learning to teach the model the similarities and
differences between plausible and implausible outputs. A clear taxonomy of the kinds of evaluation metrics
and approaches we define for joint multimodal spaces will be important to unlocking insights about the next
generation of multimodal models beyond language and vision.
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